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Abstract 

 Deep learning has revolutionized various fields, from computer vision to natural language 

processing. However, the computational demands of deep learning algorithms have necessitated 

the development of specialized hardware accelerators. This paper reviews the advancements in 

hardware accelerators designed for deep learning, focusing on GPUs, TPUs, FPGAs, and custom 

ASICs. It discusses their architectures, performance metrics, and trade-offs. Additionally, the 

paper explores emerging trends and future directions in hardware acceleration for deep learning. 

Keywords: Deep learning, hardware accelerators, GPUs, TPUs, FPGAs, ASICs, computational 

efficiency. 

1. Introduction 

The advent of deep learning has marked a transformative shift across various domains, from 

computer vision and natural language processing to autonomous systems and healthcare. These 

advanced techniques leverage complex neural networks that demand substantial computational 

resources, posing significant challenges to traditional computing architectures. As the complexity 

and scale of deep learning models continue to grow, the limitations of general-purpose CPUs in 

handling these requirements become increasingly evident. To address these challenges, the field 

has seen the emergence and evolution of specialized hardware accelerators designed to optimize 

the performance and efficiency of deep learning tasks[1]. Graphics Processing Units (GPUs), 

Tensor Processing Units (TPUs), Field-Programmable Gate Arrays (FPGAs), and Application-

Specific Integrated Circuits (ASICs) represent the forefront of this technological advancement.  

Each of these accelerators brings unique architectural innovations and performance 

characteristics, catering to different aspects of deep learning workloads. This paper aims to 

provide a comprehensive review of these hardware accelerators, highlighting their design 

principles, performance metrics, and practical applications. Furthermore, it will explore current 

trends and future directions in the realm of hardware acceleration for deep learning, offering 
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insights into how these technologies might evolve to meet the growing demands of next-

generation artificial intelligence systems. 

Deep learning, a subset of machine learning, has achieved groundbreaking results across a 

variety of applications, including image and speech recognition, natural language processing, and 

predictive analytics[2]. These advancements are driven by the use of artificial neural networks 

with multiple layers, which enable the model to learn hierarchical representations of data. The 

effectiveness of deep learning is largely attributed to its ability to handle vast amounts of data 

and perform complex computations. However, the computational demands of training and 

deploying deep neural networks are immense. Training large models requires extensive matrix 

multiplications, convolutions, and other operations that are computationally intensive and time-

consuming. 

Traditional central processing units (CPUs) are often inadequate for meeting the high 

computational demands of deep learning due to their general-purpose nature and limited 

parallelism. CPUs are optimized for a wide range of tasks but struggle with the specific needs of 

deep learning algorithms, which require massive parallel processing capabilities. This 

inadequacy has led to the development of specialized hardware accelerators designed to 

efficiently handle the unique computational workloads of deep learning[3]. By leveraging 

architectures tailored for parallelism and high throughput, these accelerators offer significant 

performance improvements and energy efficiency over conventional CPUs. This section sets the 

stage for a detailed examination of various hardware accelerators that have been developed to 

address these challenges and enhance the capabilities of deep learning systems. 

2. Graphics Processing Units (GPUs) 

Graphics Processing Units (GPUs) have emerged as a cornerstone in the realm of deep learning 

hardware acceleration due to their highly parallel processing capabilities. Originally designed for 

rendering graphics in video games and graphical applications, GPUs excel in performing parallel 

operations across thousands of cores simultaneously. This parallelism is particularly 

advantageous for deep learning tasks, which involve large-scale matrix multiplications and 

tensor operations. Modern GPUs are equipped with thousands of smaller processing units, or 

cores, which can handle multiple operations in parallel, significantly accelerating the training and 

inference processes of deep neural networks.  

The development of frameworks such as CUDA (Compute Unified Device Architecture) by 

NVIDIA has further enhanced the accessibility of GPU computing, allowing researchers and 

developers to efficiently leverage GPU resources for deep learning applications. Despite their 

advantages, GPUs also face limitations, including high power consumption and diminishing 

returns in performance as model complexity increases. Nonetheless, GPUs remain a popular 
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choice for many deep learning tasks due to their proven performance and continued 

advancements in GPU architecture and software optimization. 

Parallel processing is a fundamental feature that underpins the effectiveness of Graphics 

Processing Units (GPUs) in deep learning applications[4]. Unlike traditional Central Processing 

Units (CPUs), which typically have a limited number of cores optimized for sequential task 

execution, GPUs are designed with a vast number of smaller, more specialized cores. These 

cores operate simultaneously, allowing GPUs to execute thousands of threads in parallel. This 

architecture is particularly well-suited for the highly parallelizable nature of deep learning 

computations, such as matrix multiplications and convolution operations, which are common in 

training and inference tasks. 

 For instance, in a deep neural network, the forward pass and backpropagation processes involve 

numerous simultaneous calculations across large datasets. By distributing these tasks across 

many cores, GPUs can achieve significant speedups compared to CPUs, reducing the time 

required for training complex models and enabling real-time inference. The ability to handle 

multiple operations concurrently makes GPUs an indispensable tool for accelerating deep 

learning workflows and pushing the boundaries of what is possible with machine learning 

models. 

3. Performance and Efficiency 

The performance and efficiency of Graphics Processing Units (GPUs) in deep learning tasks are 

characterized by their ability to deliver high computational throughput and operational speed. 

GPUs are designed to handle large-scale parallel computations efficiently, which translates to 

significant reductions in training and inference times for deep learning models. For example, 

GPUs can process thousands of floating-point operations per second (FLOPS), making them 

well-suited for the intensive calculations required by neural networks. Performance benchmarks 

demonstrate that GPUs can achieve several orders of magnitude faster processing times 

compared to traditional CPUs, particularly in tasks such as matrix multiplication and 

convolution.  

However, the efficiency of GPUs is not solely measured by raw performance metrics. Power 

consumption and thermal management are also critical factors. Modern GPUs are engineered 

with advanced cooling systems and power management features to optimize energy efficiency, 

yet they still consume considerably more power than CPUs. Additionally, the efficiency gains of 

GPUs can be influenced by factors such as memory bandwidth and the optimization of 

algorithms for parallel execution[5]. Despite these considerations, GPUs remain a highly 

effective and efficient solution for accelerating deep learning processes, striking a balance 

between computational power and resource utilization. 
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When comparing GPUs to other hardware accelerators such as Tensor Processing Units (TPUs), 

Field-Programmable Gate Arrays (FPGAs), and Application-Specific Integrated Circuits 

(ASICs), several key differences emerge in terms of performance, flexibility, and efficiency. 

GPUs, with their high parallel processing capabilities, offer substantial advantages in handling 

the complex computations required for deep learning[6]. They are versatile and support a wide 

range of applications through programming frameworks like CUDA, making them a popular 

choice for many deep learning tasks. However, GPUs are not always the most efficient in terms 

of power consumption and can struggle with specific workloads that are highly specialized. 

TPUs, designed specifically by Google for deep learning tasks, are optimized for tensor 

processing and offer superior performance and efficiency for matrix-heavy operations. They 

excel in training and inference of large-scale models within Google's Tensor Flow ecosystem but 

are less flexible than GPUs. 

 FPGAs provide a different set of advantages, offering customizable hardware that can be 

tailored to specific algorithms and workloads, potentially achieving high performance and energy 

efficiency for specialized tasks. However, programming FPGAs can be complex and less 

straightforward compared to GPUs. ASICs, being custom-designed chips for particular 

applications, can deliver unparalleled performance and efficiency but lack the flexibility and 

adaptability of GPUs. Each of these accelerators has its strengths and trade-offs, making the 

choice of hardware dependent on the specific needs and constraints of the deep learning 

application in question. 

4. Application-Specific Integrated Circuits (ASICs) 

Application-Specific Integrated Circuits (ASICs) represent a category of hardware accelerators 

designed for optimized performance in specific applications, including deep learning. Unlike 

general-purpose GPUs or FPGAs, ASICs are custom-designed to execute particular tasks with 

maximum efficiency and speed. In the context of deep learning, ASICs are tailored to perform 

the computationally intensive operations required by neural networks, such as matrix 

multiplications and convolutions, with minimal latency and energy consumption. This 

specialization allows ASICs to achieve superior performance compared to other accelerators, 

particularly in scenarios where the deep learning model and workload are well-defined and 

consistent. For instance, Google’s Tensor Processing Units (TPUs) are a type of ASIC 

specifically developed for accelerating Tensor Flow operations, showcasing significant gains in 

both throughput and efficiency[7]. The primary advantages of ASICs include their high 

performance, lower power consumption, and reduced physical footprint. However, the design 

and manufacturing of ASICs come with substantial upfront costs and longer development times, 

and their inflexibility means they are less adaptable to changes in algorithms or model 

architectures. Despite these limitations, ASICs are increasingly favored in large-scale, 

production environments where performance and efficiency are paramount, and the benefits of 

customization outweigh the costs and rigidity. 
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Application-Specific Integrated Circuits (ASICs) are custom-designed hardware optimized to 

perform specific computational tasks with maximum efficiency. The design process for ASICs 

involves tailoring the circuit architecture to meet the exact requirements of a given application, 

such as deep learning. This involves defining the circuit layout, logic gates, and interconnections 

to perform targeted operations like matrix multiplications and convolutions with high speed and 

low power consumption. ASICs are built using standard cell libraries and custom logic to ensure 

that every component is optimized for the specific algorithms and operations they are intended to 

accelerate. 

 The operational principles of ASICs revolve around their ability to execute predefined tasks 

more efficiently than general-purpose processors. This is achieved through specialized hardware 

units and processing pipelines that are designed to handle repetitive tasks inherent in deep 

learning processes. For instance, ASICs may include dedicated hardware for tensor processing, 

reducing the need for general-purpose computation and significantly boosting performance. The 

highly specialized nature of ASICs results in lower latency and power usage compared to more 

flexible hardware options, such as GPUs or FPGAs, but at the cost of reduced adaptability to 

new or evolving algorithms. The precise and efficient design of ASICs makes them particularly 

effective in high-throughput and energy-constrained environments where specific tasks are 

repetitive and well-understood. 

5. Field-Programmable Gate Arrays (FPGAs) 

Field-Programmable Gate Arrays (FPGAs) offer a unique blend of flexibility and performance in 

the realm of hardware acceleration. Unlike fixed-function ASICs, FPGAs are reconfigurable 

circuits that allow users to program and reprogram their hardware to suit a wide range of 

applications. This reconfigurability makes FPGAs particularly valuable for deep learning tasks 

where requirements may evolve or vary. FPGAs are composed of a grid of configurable logic 

blocks (CLBs) and programmable interconnections, which can be configured to implement 

complex digital circuits and algorithms[8]. This architecture allows FPGAs to perform parallel 

processing efficiently, enabling the acceleration of tasks such as matrix operations and 

convolutions used in neural networks. The ability to tailor the hardware to specific algorithms 

provides performance benefits similar to those of ASICs, while also offering greater adaptability. 

 However, programming FPGAs can be more complex compared to GPUs and requires a deep 

understanding of hardware description languages (HDLs) and design tools. Despite this 

complexity, the customization offered by FPGAs allows for optimization of both speed and 

energy efficiency for specific deep learning applications. FPGAs strike a balance between the 

flexibility of general-purpose processors and the high performance of custom-designed 

hardware, making them a valuable option for scenarios where application-specific optimizations 

are crucial[9]. 
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Programming models for Field-Programmable Gate Arrays (FPGAs) are distinct from those used 

for general-purpose processors due to the unique nature of FPGA architecture. FPGAs are 

programmed using hardware description languages (HDLs) such as VHDL (VHSIC Hardware 

Description Language) and Verilog. These languages enable designers to define the hardware at 

a low level, specifying how the individual logic blocks and interconnections should be 

configured. This low-level approach provides fine-grained control over the hardware, allowing 

for highly optimized implementations of specific algorithms. In recent years, higher-level 

synthesis (HLS) tools have emerged, enabling designers to use higher-level languages like C, 

C++, and OpenCL to program FPGAs. 

 These tools translate high-level code into HDL, simplifying the development process and 

making FPGA programming more accessible to software engineers. Despite these advancements, 

FPGA programming remains more complex and time-consuming compared to programming 

GPUs, which benefit from mature and user-friendly frameworks such as CUDA and 

OpenCL[10]. The reconfigurable nature of FPGAs means that developers must also consider the 

trade-offs between flexibility, performance, and resource utilization. Effective FPGA 

programming requires a deep understanding of both the application and the hardware, as well as 

proficiency in the appropriate tools and languages. This complexity is balanced by the significant 

performance and efficiency gains that can be achieved through custom hardware optimizations, 

making FPGAs a powerful tool for deep learning and other compute-intensive applications. 

6. Tensor Processing Units (TPUs) 

Tensor Processing Units (TPUs) are specialized hardware accelerators designed by Google 

specifically for deep learning applications. Introduced in 2016, TPUs are optimized for tensor 

operations, which are the core computations in many deep learning models. Unlike GPUs, which 

are general-purpose and cater to a wide range of parallel processing tasks, TPUs are tailored to 

execute matrix multiplications and other linear algebra operations more efficiently. The 

architecture of TPUs includes large-scale matrix multiplication units and a high-bandwidth 

memory system, allowing them to process vast amounts of data simultaneously with lower 

latency and power consumption compared to GPUs.  

TPUs integrate seamlessly with Google’s Tensor Flow framework, making it easier for 

developers to deploy and scale deep learning models in a cloud environment. Performance 

benchmarks show that TPUs can significantly speed up both the training and inference phases of 

deep learning models, particularly for large-scale applications such as natural language 

processing and image recognition. However, TPUs are less versatile than GPUs and are 

primarily available through Google Cloud, which can limit their accessibility[11]. Despite these 

constraints, TPUs represent a significant advancement in hardware acceleration, offering a 

powerful solution for specific deep learning workloads where performance and efficiency are 

paramount. 
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Performance metrics are critical in evaluating the effectiveness of hardware accelerators like 

Tensor Processing Units (TPUs) in deep learning applications. Key metrics include throughput, 

latency, and energy efficiency. Throughput, often measured in teraFLOPS (trillion floating-point 

operations per second), indicates the amount of computational work an accelerator can handle 

within a given time frame. High throughput is essential for accelerating the training of large 

neural networks. Latency, the time taken to complete a specific operation or task, is another 

crucial metric, particularly for real-time inference tasks where quick response times are required. 

Lower latency translates to faster processing of individual data points, making it vital for 

applications such as autonomous driving and real-time video analysis. Energy efficiency, 

measured in performance per watt, reflects the accelerator's ability to perform computations 

while minimizing power consumption.  

This metric is increasingly important in large-scale data centers where energy costs are a 

significant concern. TPUs excel in these performance metrics, offering high throughput and low 

latency while maintaining energy efficiency. These attributes make TPUs particularly suitable 

for large-scale and compute-intensive deep learning tasks. Evaluating these metrics helps 

determine the most appropriate hardware accelerator for specific applications, balancing 

computational power, speed, and resource consumption. 

7. Hybrid and Modular Approaches 

Hybrid and modular approaches in hardware acceleration for deep learning combine the 

strengths of various accelerators to achieve optimal performance and flexibility. Hybrid systems 

integrate multiple types of hardware accelerators, such as GPUs, TPUs, FPGAs, and ASICs, 

within a single computing environment. This integration allows each type of hardware to be 

utilized for the tasks it handles best, leveraging GPUs for their general-purpose parallel 

processing capabilities, TPUs for efficient tensor computations, and FPGAs for customizable and 

task-specific optimizations. Modular approaches involve designing hardware and software 

components that can be easily swapped or upgraded, providing a flexible and scalable solution 

that can adapt to evolving deep learning requirements.  

For example, a modular system might employ a base CPU for general control tasks, with 

interchangeable accelerator modules that can be updated as new technologies emerge. These 

approaches offer significant advantages in terms of performance, efficiency, and adaptability, 

enabling systems to handle a diverse range of deep learning workloads. Additionally, hybrid and 

modular designs can enhance fault tolerance and energy efficiency by dynamically allocating 

tasks to the most suitable and power-efficient hardware available[12]. As deep learning models 

continue to grow in complexity and scale, hybrid and modular approaches are expected to play a 

critical role in meeting the increasing computational demands while maintaining flexibility and 

future-proofing the infrastructure. 
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Current research and development in the field of hardware accelerators for deep learning is 

focused on pushing the boundaries of performance, efficiency, and flexibility. Researchers are 

exploring new architectures and materials to enhance the capabilities of existing accelerators, 

such as GPUs, TPUs, FPGAs, and ASICs. One area of active investigation is the development of 

neuromorphic computing, which aims to mimic the neural structures and functions of the human 

brain to achieve unprecedented levels of efficiency and parallelism. Another promising avenue is 

the integration of photonic components, which use light instead of electrical signals to transmit 

data, potentially leading to significant improvements in speed and energy consumption. 

Additionally, there is considerable interest in quantum computing, which holds the potential to 

solve certain deep learning problems exponentially faster than classical computers. In the realm 

of software, researchers are working on advanced algorithms and programming models that can 

better leverage the unique capabilities of different hardware accelerators. Efforts are also being 

made to develop more sophisticated hybrid and modular systems that can seamlessly integrate 

multiple types of accelerators, dynamically optimizing resource allocation based on the specific 

requirements of deep learning tasks. These cutting-edge research and development initiatives aim 

to address the ever-growing computational demands of deep learning, paving the way for more 

powerful and efficient artificial intelligence systems. 

8. Potential Impact on Deep Learning 

The advancement of hardware accelerators holds significant potential to transform the landscape 

of deep learning, driving both innovation and application scalability. With the continuous 

improvement of GPUs, TPUs, FPGAs, and ASICs, deep learning models can be trained and 

deployed more efficiently, reducing the time and computational resources required. This 

acceleration enables more complex and larger-scale models to be developed, pushing the 

boundaries of what is possible in fields such as natural language processing, computer vision, 

and autonomous systems. Improved hardware also facilitates real-time processing and inference, 

which is critical for applications that require immediate decision-making, such as autonomous 

vehicles and real-time video analytics.  

Furthermore, the enhanced energy efficiency of modern hardware accelerators can lead to 

significant cost savings in large-scale data centers and reduce the environmental impact of deep 

learning computations. The ability to quickly iterate and refine models accelerates research and 

development cycles, fostering innovation and the discovery of new algorithms and techniques. 

Overall, the evolution of hardware accelerators is poised to make deep learning more accessible, 

scalable, and sustainable, opening new avenues for scientific research, commercial applications, 

and technological advancements. 

The current state of hardware accelerators for deep learning is marked by rapid advancements 

and widespread adoption across various industries. GPUs remain the dominant choice for many 

applications due to their versatile performance and established software ecosystems, such as 
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CUDA and Tensor Flow. TPUs have carved out a significant niche, particularly within Google’s 

infrastructure, by offering optimized performance for tensor operations. FPGAs are gaining 

traction for their ability to provide customized acceleration and adaptability, despite the 

complexity of programming them[13]. ASICs, although less flexible, are being increasingly 

deployed in large-scale, production environments where performance and efficiency are 

paramount. Looking forward, the future prospects for hardware accelerators are promising. 

Emerging technologies such as neuromorphic computing, which aims to mimic the human 

brain's neural architecture, and photonic computing, which uses light for data transmission, are 

expected to further revolutionize the field. 

 Quantum computing, although still in its nascent stages, holds the potential to solve certain deep 

learning problems exponentially faster than classical computers. Additionally, the development 

of hybrid and modular systems that integrate multiple types of accelerators will provide even 

greater flexibility and efficiency. These advancements will likely lead to more powerful, 

efficient, and accessible deep learning systems, driving innovation and enabling new applications 

across various domains. 

9. Conclusion 

The development and evolution of hardware accelerators have been pivotal in advancing the 

capabilities of deep learning, enabling more complex models and faster processing times. 

Graphics Processing Units (GPUs), Tensor Processing Units (TPUs), Field-Programmable Gate 

Arrays (FPGAs), and Application-Specific Integrated Circuits (ASICs) each offer unique 

advantages that cater to different aspects of deep learning workloads.  

GPUs provide versatile and powerful parallel processing, TPUs offer optimized performance for 

tensor operations, FPGAs bring customization and adaptability, and ASICs deliver unmatched 

efficiency for specific tasks. As the demands of deep learning continue to grow, hybrid and 

modular approaches are emerging as promising solutions to integrate the strengths of various 

hardware accelerators. The current state of research and development is focused on pushing the 

boundaries of performance, efficiency, and flexibility, with innovations such as neuromorphic 

computing, photonic computing, and quantum computing on the horizon. 

References 

[1] D. Narayanan et al., "Efficient large-scale language model training on gpu clusters using 
megatron-lm," in Proceedings of the International Conference for High Performance Computing, 
Networking, Storage and Analysis, 2021, pp. 1-15.  

[2] N. Kamuni, S. Dodda, V. S. M. Vuppalapati, J. S. Arlagadda, and P. Vemasani, "Advancements in 
Reinforcement Learning Techniques for Robotics," Journal of Basic Science and Engineering, vol. 
19, pp. 101-111. 



Vol 4 Issue 1   MZ Computing Journal  

10 

https://mzjournal.com/index.php/MZCJ 

 

[3] A. X. M. Chang and E. Culurciello, "Hardware accelerators for recurrent neural networks on 
FPGA," in 2017 IEEE International symposium on circuits and systems (ISCAS), 2017: IEEE, pp. 1-
4.  

[4] A. Shawahna, S. M. Sait, and A. El-Maleh, "FPGA-based accelerators of deep learning networks 
for learning and classification: A review," ieee Access, vol. 7, pp. 7823-7859, 2018. 

[5] S. Mittal and S. Umesh, "A survey on hardware accelerators and optimization techniques for 
RNNs," Journal of Systems Architecture, vol. 112, p. 101839, 2021. 

[6] S. Dodda, N. Kamuni, V. S. M. Vuppalapati, J. S. A. Narasimharaju, and P. Vemasani, "AI-driven 
Personalized Recommendations: Algorithms and Evaluation," Propulsion Tech Journal, vol. 44. 

[7] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, "DLAU: A scalable deep learning accelerator 
unit on FPGA," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 
vol. 36, no. 3, pp. 513-517, 2016. 

[8] M. N. Bojnordi and E. Ipek, "Memristive boltzmann machine: A hardware accelerator for 
combinatorial optimization and deep learning," in 2016 IEEE International Symposium on High 
Performance Computer Architecture (HPCA), 2016: IEEE, pp. 1-13.  

[9] S. Dodda, N. Kamuni, J. S. Arlagadda, V. S. M. Vuppalapati, and P. Vemasani, "A Survey of Deep 
Learning Approaches for Natural Language Processing Tasks," International Journal on Recent 
and Innovation Trends in Computing and Communication, vol. 9, pp. 27-36. 

[10] S. Kundu, S. Banerjee, A. Raha, S. Natarajan, and K. Basu, "Toward functional safety of systolic 
array-based deep learning hardware accelerators," IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems, vol. 29, no. 3, pp. 485-498, 2021. 

[11] B. Chen, T. Medini, J. Farwell, C. Tai, and A. Shrivastava, "Slide: In defense of smart algorithms 
over hardware acceleration for large-scale deep learning systems," Proceedings of Machine 
Learning and Systems, vol. 2, pp. 291-306, 2020. 

[12] T. Wang, C. Wang, X. Zhou, and H. Chen, "An overview of FPGA based deep learning 
accelerators: challenges and opportunities," in 2019 IEEE 21st International Conference on High 
Performance Computing and Communications; IEEE 17th International Conference on Smart City; 
IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2019: 
IEEE, pp. 1674-1681.  

[13] A. G. Blaiech, K. B. Khalifa, C. Valderrama, M. A. Fernandes, and M. H. Bedoui, "A survey and 
taxonomy of FPGA-based deep learning accelerators," Journal of Systems Architecture, vol. 98, 
pp. 331-345, 2019. 

 

 


